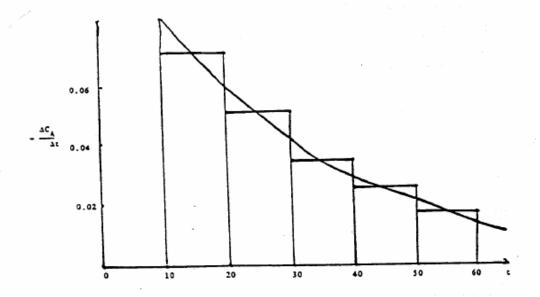
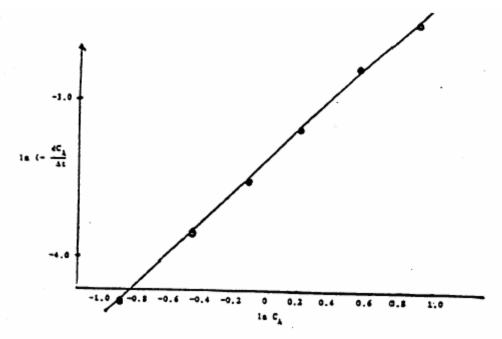

Solutions Assignment 7

Problem 1.

$$\frac{dC_A}{dt} = kC_A^a$$
From a non-linear fit, we get
$$k = 0.033$$

$$n = 1.54$$


Problem 2


(a) Mole Balance: constant V

$$\frac{dC_{A}}{dt} = r_{A} = -k C_{A}^{\alpha}$$

$$\ln \left(-\frac{dC_{A}}{dt}\right) = \ln k + \alpha \ln C_{A}$$

Differentiation

After plotting and differentiating by equal area

-dC _A /dt	0.000					
	0.082	0.061	0.042	0.030	0.0215	0.014
$ln(-dC_A/dt)$	-2.501	-2.797				
			-3.170	-3.507	-3.840	-4.269
ln C _A	0.896	0.554	0.207	-0.128	-0.478	
_			0.207	-0.120	-0.4/8	-0.821

Using linear regression:
$$\alpha = 1.0$$

 $\ln k = -3.3864 \rightarrow k = 0.0344 \text{ min}^{-1}$

(b)
$$F_{B} \longrightarrow F_{B}$$

$$f_{A} = Vr_{A} = F_{B}$$

$$f_{A} = -0.0344 \frac{ppm}{min} = -0.0344 \frac{mg}{1 min} \text{ at } C_{A} = 1 \text{ ppm}$$

$$F_{B} = (25000 \text{ gal}) (0.0344 \frac{mg}{1 \text{ min}}) \frac{60 \text{ min}}{hr} \frac{1 \text{ g}}{1000 \text{ mg}} (\frac{3.7851}{453.6}) \frac{1}{\text{gal}} = 0.429 \frac{1 \text{bm}}{hr}$$