
- 1. Problem 6-7
 - $\begin{array}{l} A \xrightarrow{k_1} B \xrightarrow{k_2} C \\ \hline \frac{dC_A}{dt} = -k_1 C_A \\ Initial \ Condition: C_A = C_{Ao} \ att = 0 \\ Thus, \\ C_A = C_{A0} e^{-k_t} \end{array}$
 - $$\begin{split} \frac{dC_B}{dt} &= -k_2 + k_1 C_A & B: alcohol in blood\\ Initial Condition: C_B &= 0 \ at t = 0\\ Thus, \\ C_B &= C_{A0}(1 e^{-k_1 t}) + C_{B0} k_2 t \end{split}$$
 - a. Two tall martinis = 80 g EtOH Body fluid = 40 L $C_{A0} = 80/40 = 2 g/l$

Thus, $C_B = 2(1 - e^{-10_1 t}) + 0 - 0.192t$, t in hrs

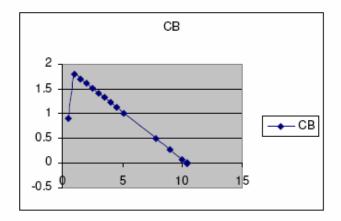
t (CB,g/I
1	1.807909
1.75	1.664
2.5	1.52
3.25	1.376
4	1.232
4.75	1.088
5.5	0.944
6.25	0.8
7	0.656
7.75	0.512
8.5	0.368
9.25	0.224
10	0.08
10.75	-0.064

For U.S., $CB = 1 g/l \implies t = 5.21 h$

- b. For Sweden, CB = 0.5, thus t = 7.8 h
- c. For Russia, t = 10.4 h

t

d. Drinks taken 1/2 hr apart.


For the 1st
$$\frac{1}{2}$$
 hr:
 $C_A = 1e^{-10t}$
 $C_B = 1(1 - e^{-10_1 t}) + 0 - 0.192t$

At the end of
$$1^{\text{st}} \frac{1}{2}$$
 hr: $t = 0.5$
 $C_{A,1/2} = e - 5 = 6.74e - 3 g/l$
 $C_{B,1/2} = (1 - e^{-5}) - 0.192 * 0.5 = 0.8973 g/l$

After the 1st ¹/₂ hr:

$$C_A = C_{A,1/2} e^{-k_1(t-0.5)}$$

 $C_B = C_{A,1/2} (1 - e^{-k_1(t-0.5)}) + C_{B,1/2} - k_2(t-0.5)$

10	0.0733
10.35	0.0061
10.4	-0.0035

For CB = 1g/l (U.S.), t = 5.15 h = 0.5 g/l (Swe), t = 7.8 h = 0 g/l (Rus), t = 10.4 h

e. Uniform rate of consumption = 2 g/l/h

For the 1st hour:

Rewrite basic equations:

$$\frac{dC_A}{dt} = 2 - k_1 C_A$$

Initial Condition : $C_A = 0$ at $t = 0$
Thus,

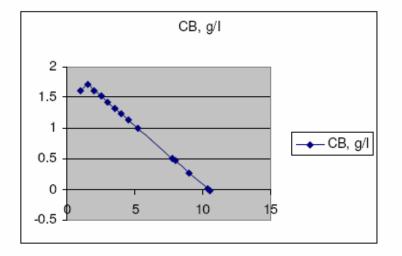
$$C_A = \frac{2}{k_1} (1 - e^{-k_1 t})$$

$$\begin{split} \frac{dC_B}{dt} &= -k_2 + k_1 C_A \\ Initial \ Condition: \ C_B &= 0 \ at t = 0 \\ Substituting \ for \ C_A, \\ C_B &= \frac{2}{k_1} (e^{-k_1 t} - 1) - (k_2 + 2)t \end{split}$$

At the end of the 1st hour:

$$C_{A,1} = \frac{2}{10} (1 - e^{-10}) = 0.2 \ g/l$$

$$C_{B,1} = \frac{2}{10} (e^{-10} - 1) - (0.192 + 2) = 1.608 \ g/l$$


After the 1st hour:

$$C_A = C_{A,1} e^{-k_1(t-1)}$$

 $C_B = C_{A,1} (1 - e^{-k_1(t-1)}) + C_{B,1} - k_2(t-1)$

t

Thus,

CB, g/I	
1	1.608
1.5	1.710652
2	1.615991
2.5	1.52
3	1.424
3.5	1.328
4	1.232
4.5	1.136
5.21	0.99968
7.8	0.5024
8	0.464
9	0.272
10.4	0.0032
10.5	-0.016

Thus, CB =1(US), t = 5.21 h

f. 60 g immediately => CA0 = 1.5 g/l $C_B = C_{A0}(1 - e^{-k_1 t}) + C_{B0} - k_2 t = 1.5(1 - e^{-10t}) - 0.192t$ CB = 1 g/l at t=0.115 h and at t=2.6h