Basics of

Statistical Experiment-Design

The relative importance of variables affecting a chemical process, as well as
the importance of their interactions, can be found by planning and
expediting research experiments according to factorial-design principles.
Here is a simplified explanation of this important technique.

Y. PAVELIC and U. SAXENA, University of Wisconsin-Milwaukee

Since the purpose of research is to obtain informa-
tion, research efficiency might be defined as the
amount of useful information obtained per unit cost.
One technique for increasing this efficiency is that of
the statistically designed experiment.

To show how simple and efficient this manner of
planning experiments is, we shall discuss the
principles involved in the factorial-design 1ethod.
This systematic, economical technique speeds up the
solution of research projects by permitting evalua-
tions to be made before completing all experiments.
The method also indicates the relative importance of
process variables and interactions, comething not
ordinarily possible with other techniques.

It is not necessary to be a trained statistician or
mathematician to use these ideas; experience has
shown that engineers can easily learn the funda-
mentals and apply them.®

Statistics in Research

Research problems are solved by an iterative pro-
cedure that conforms to the following pattern: the

° For a%detailed discussion of statistical methods, see the 12
articles by L. Bryce Andersen published in Chem. Eng., Oct. 29, 1962,
to Sept. 2, 1963. These articles are available—with corrections—as
Reprint 237 (see Reader Service Card in back).
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research worker comes up with an idea (conjecture)
that leads to the design of an experiment. As the
experiment is performed and the results analyzed,
new ideas crop up, which lead to a repetition of the
entire process.

Statistics come into the research picture in the
design of experiments and the analysis of data.
Design is concerned -with how experiments are
planned, and analysis with the method of extracting
all relevant information from the data that has been
collected.

Of these two applications, design is undoubtedly of
greater importance. The damage caused by poor
design is irreparable because, no matter how
ingenious the analysis, little information can be sal-
vaged from poorly planned experiments. On the other
hand, if the design is sound, then even quick methods
of analysis can yield a great deal of pertinent informa-
tion.

In this discussion, we emphasize the statistical
two-level factorial design method, but also mention
the fractional factorial design procedure because these
two systems are very powerful tools in any kind of
research, and have been found to be of special value
in industry.

The above methods are applicable to any field, be
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Definition of Terms

Variance A deseription of the spread or scat-
ter of data.
95% confi- A measure of the degree of confi-

dencein- dence in the range (interval)

terval within which the true values of the
effects of variables and their inter-

actions lie.
Degree of A statistical parameter. For n num-
freedom ber of observations within an ex-

periment, the degree of freedom
isn—1.

Replication Repetition of a test at the same
experimental conditions, usually
carried out to obtain an estimate
of the experimental error.

it chemical, petroleum, food, biology, engineering,
business, economics, etc. Some typical examples of
where we have applied these methods include an
investigation of photographic film; a study of polymer
solutions; an investigation to obtain a stable product;
tool-life testing; welding-quality of steel rails; study
of knocking in internal-combustion engines; numerous
problems in physics, nuclear engineering and medical
science.

Two-Level Factorial Design (2%)

As example, let us consider a hypothetical case in
which a large number of variables affect some aspect
(yield, quality, concentration, etc.) of a manufactured
organic compound. To determine to what extent these
variables are involved, we must first study the process
and then plan experiments.

If 'we design the experiments on the basis of vary-
ing one variable at a time (as we have all done at one
time or another), we face the following dis-
advantages: too many experiments are required,
which are time-consuming and expensive; there is no
way to screen variables, i.e. find those that are the
most important; the interaction between variables is
not determined and thus an insight into their simul-
taneous effect is not gained.

A logical experimental program ideally suited for
practical study of any physical system or situation is
factorial design. Here, experimental conditions are
chosen by selecting a fixed number of levels for each
variable, after which experiments are run at all pos-
sible combinations. Say that in our sample problem
we decide to study first the effect on yield of the
variables of temperature (T'), pressure (p) and time
(t). We assume all other variables are negligible and
measure the effect of the chosen ones on yield in y
units.

Next, we must decide how many experiments we
need*in order to evaluate the effect of the chosen
variables. Shall we run 1007 This seems too many.
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Four? Not enough. We therefore choose a factorial
design of 23, which is eight runs.

In a 2% design, the 2 represents the number of
levels, and k the number of variables (factors).

Levels of Variables—For each of the three variables
(T, p, t), a high level and a low level are chosen,
whose respective values are:

Process temperature (T), °F.: 200 and 100
Pressure (p), psi.: 60 and 20
Time (t), min.: 30 and 10

Coding Equations—To simplify writing all possible
combinations of the two levels of the three variables,
we use a coding system so that all the conditions can
be written as either +1 or —1. The coding system
uses +1 for the high level and ~1 for the low level.
It should be remembered that this coding system is
only for convenience. Coded variables are generally
denoted by x with a proper subseript.

If-x; denotes the coded value of the process tem-
perature, then the corresponding coding equation may
be expressed in general form as:

_ (evel of variable) — (midvalue of variable)
unit change

= [(level of T) — 150]/50

which may be shown schematically as:

I

I100 E. Midﬁalne 200 F.
I
Low ILO High
+~— 50 units ——
-1 41
0

We can do likewise for the other variables. There-
fore, the respective coded low and high levels for each
one of the variables (x;, x,, x5) are —1 and +1.

Since all possible combinations for two levels of
three variables require eight tests, one way to write
down these combinations is as shown in the accom-
panying table. Note that for x; the signs alternate
each time; for x,, they alternate in pairs; and for xj,
they alternate in groups of four.

By writing down these three columns next to each

o1 1M e i bt L i

Factorial design 23 fora chemical-process
research experiment

Test Coded Design Uncoded Design
No. Matrix Matrix
n n n T P t v
1 -1 -1 =1 100 20 10 2
2 +1 -1 -1 200 20 10 4
3 -1 +1 -1 _ 100 60 10 8
4 +1 +1 -1 200 60 10 =1
5 -1 -1 +1 100 20 30 10
6 +1 -1 +1 200 20 30 8
7 -1 +1 +1 100 60 30 12
8 +1 41  +1. 200 60 30 18
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_ FACTORIAL DESIGN 2° in geometric form—Fig. 1

other, as shown in the table, we obtain in a coded form
the desired 23 factorial design, which consists of the
eight distinct combinations. The table shows these
coded combinations, as well as the equivalent design
without coding.

The design matrix gives the experimental settings
for the test. For example, the code settings for Test
No. 4, which are +1, +1, —1, mean that the test
conditions are to be T = 200 F., p = 60 psi., and
t = 10 min. Upon performance of the experiment,
six units of response (y = 6) are produced.

If we consider our example’s three variables as
three mutually perpendicular coordinate axes (21, xa
and xg), the 23 factorial design can be represented
geometrically as a cube (Fig. 1). The eight comer-
points of the cube represent the eight test conditions.
The origin of the system (0, 0, 0) represents,
physically, the midvalue conditions of temperature
(150 F.), pressure (40 psi.) and time (20 min).

With respect to this origin, the corner marked with
an encircled 1 has coordinates —1, —1, —1 and,
when compared with the table, the corner is seen to
represent Test No. 1 performed at low-level conditions
of all variables. The same holds true for the other
comers (2, 3, 4, etc.); so if we compare the co-
ordinates of all corner points with conditions in the
table, we see that the coordinates represent the eight
_ tests listed in the table.

Analyzing Test Results

It is usually good practice to randomize the order
in which the tests are actually performed. Once they
are run and the data obtained, the effect of each
variable on the measured item must be evaluated
(analyze‘ﬁ).

Essentially, what we want to know is which
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AVERAGE EFFECT of temperature (E:)—Fig. 2

variables (or combinations thereof) are important for
the process. We want to determine quantitatively, or
perhaps only qualitatively, how the individual
variables rank with respect to their influence on the
process. This information may be obtained by com-
puting average effects of each variable.

For instance, one way to proceed to evaluate the
influence of temperature on yield is to observe in
Fig. 2 that for tests 1 and 2 the conditions of time
and pressure are the same, but the temperature con-
ditions are different. Therefore, the difference in the
results of these two tests can be attributed solely to
the effect of temperature.

Similarly, the test conditions for test pairs 3-4, 5-6
and 7-8 are similar with respect to time and pressure,
but different with respect to temperature. Thus, the
differences in the results within each of these pairs
reflect the effect of temperature alone. We can
average these four differences to calculate the overall
average temperature-effect (E,):

E; = [(Zy's at high-temperature level) — (Sy’s at
low-temperature level)]/4

= =) + W —w) + (v — us) + (s — y)]/4

=[(4+6+8+18) —(2+10+8+12)]/4 =10
Similarly, for the average pressure-effect (E,) and the
average time-effect (Eg):
Ey=(184+6+12+18) —(2+4+10+8)/4 =50
Ey=(10+8+12+18) -~ (2+4+6+8)/4=70
. Geometrically, the average effect of temperature is
simply the difference between the average result on
a plane at high level of temperature and the average
result on a plane at low level. The same holds true
for the average pressure-effect and the average time-
effect. The shaded areas of Fig. 3 show the high- and
low-level planes for each one of the effects.

To understand better the meaning of average effect,
consider, for example, an average pressure-effect
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(Ea) of 5.0. This indicates that on the average, over
the range of variables studied, the effect of changing
the pressure from its low to its high level is to increase
the quantity y of organic compound produced by five
units.

The quantity of E; (or Es, or E;) so calculated is
commonly referred to as the main effect of tempera-
ture (or pressure, or time), but we prefer to call it
the overall average temperature (pressure, time)
effect to describe the term more accurately.

Two-Factor Interactions

One of the advantages of factorial design is that not
only can we calculate the independent average effect
of each variable but also the interaction of the vari-
ables.

Physically, just what is a two-factor interaction?
Let us consider the variables x; and x» in our example.
If the effect of changing temperature is the same for
both levels of pressure (or, what amounts to the same
thing, if the effect of changing the pressure is the
same at both temperature levels), we say there is
no two-factor interaction between temperature and
pressure. In a sense, temperature and pressure act
independently of each other. ;

On the other hand, if the effect of changing tem-
perature is not the same for both levels of pressure
(or, equivalently, if the effect of changing the pres-
sure is not the same for both temperatures), we say
there is a two-factor interaction between temperature
and pressure. In this case, the effect of one factor, or
variable, depends on the level of the other one.

Since we are considering an example with three
variables, there are three two-factor interactions;
temperature-pressure (E;2), temperature-time (E;s),
and pressure-time (Ez3).

To calculate the interaction between temperature
and pressure, we can visualize the geometrical-repre-
sentation cube as being compressed in the direction
of time, thereby transforming the cube into the two-
dimensional square shown in Fig. 4.

The values at the four corners of the square are
the average results of tests 1 and 5, 2 and 6, 3 and 7,

and 4 and 8. Also shown are the two diagonals A and ™

B, which represent the high- and low-level conditions. .
Tests 1, 4, 5 and 8 fall on Diagonal A, and tests 2, 3,
6 and 7 fall on Diagonal B. The interaction between
ambient temperature and pressure can be calculated
by taking the average of the results on Diagonal A
and subtracting the average results on Diagonal B:

By = [(Zy's at A) — (Zy's at B)]/4

=[(2+10+6+18) —(¢4+8+8+12))/4=10
Similarly, for Z; and Zx:
Ey=[2+84+8+18)—(10+12+6+4)]/+ =10
En=[2+4+4+12+18) - (10 +8+6+8)//4=10
E\s, Ey; and En are shown in Tig. 5.

Since none of the two-factor interaction equations is
equal to zero, this means that variables x; and =z,
x1 and xsm x» and x3 do interact. Similar tech-
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niques can be applied to compute three-factor interac-
tions between temperature, pressure and time (Ei23),
as we shall see in the next section.

Simplified Calculation Method

Although the graphical-representation approach
(cubes method) is practical for the average ef-
fects as well as for the two-factor interactions, the
usefulness of the method is somewhat limited because
if it is applied to more than three variables it becomes
cumbersome, if not impossible to use. We shall there-
fore discuss a simplified calculation procedure that is
easily applied to the analysis of two-level factorial
designs involving any number of variables.

Continuing with our example, we first construct a
calculation matrix from the design matrix in the
following manner:

Calculation Matrix

Design Matrix
"
z I3 z; :)1 3+ In b2 41 ¥
-1 -1 =1 +1 +1 +1 -1 2
+1 -1 =1 -1 -1 +1 +1 4
-1 +1 =1 -1 +1 -1 +1 8
+1 +1 -1 +1 -1 -1 -1 6
-1 -1 41 +1 -1 -1 +1 10
+1 -1 +1 -1 +1 -1 =1 8

-1 +1  +1 -1 -1 +1 -1 12
+1 +1 +1 +1 +1 +1 +1 18
Now the average effects and interactions are
obtained by multiplying the relevant column of effect
(%1, %2, x3) or interaction (%2, x1s, x25) by the y

column, and then dividing by 4. (The divisor, n, is
the number of plus signs in the average-effect or
interaction column.)

For the average effect of temperature (E;):

z v
—1-| =
+1 4 +4
+1 X 6 = +6
- 10 -10
+1 18 +8
-1 2 -12
+1 1 +18
Z=4

Average temperature effect = /n = 4/4 = |

For the average interaction E;.s:

ZiTsTy y
= =
+1 4 +4
+1 8 +8
=1 X 6 = -8
+1 10 +10
-1 8 -8
-1 12 -12
+1 18 +18

=12

Average interaction = Z/n = 12/4 = 3

Other effects and interactions can be computed in
a similar way. Summarizing obtained effects and
interactioh (regardless of method used):
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Two-Factor Three-Factor
Avg. Effects Interactions Interactions
E: =] E;: =] Elﬁ = 3
Ez &S 5 Eu =]
E; = 7 Eg = 1
Avg.y =85

If we knew anything about our inherent experi-
mental error, we could stop here and already reach
some conclusions about the above variables (effects)
and their interactions, as well as about their ultimate
influence on the overall process. By ranking the vari-
ables according to the above numerical values, we
would see that time is more important than pressure,
and that the combined effect of all three variables
(E1z3) is next in order of importancé. The average
effect E, and the two-factor interactions Ei., Eqa
and E,; are all the same and the least important in
the chemical process considered. '

The _error, or intrinsic variability. if not known, is

ication of the experiment
or by running same more tests at some other points,
- -.-_—_'""—'——-____._.._.

Fractional Factorial Design

Although actual problems usually depend on many
variables, it is not difficult to apply factorial-design -
theory to their solution because the principles in-
volved are the same as for our three-variable example.
Of course, a calculation matrix with several variables
becomes much larger. For instance, seven variables
will require 128 tests (27-design = 128), and 10
variables would require 1,024 runs. —

However, factorial design is also an effective screen-
ing method, and as such it leads into the development |
of two-level fractional factorial design (indicated as
2¥7), which is a shortened technique through which
the number of experiments required is reduced. The
method is called fractional to indicate that only a
portion of the full factorial design is carried out.

Since the variables are screened as the testing and
calculations proceed, it does not become necessary
anymore to run all the tests, which results in savings
of time and money.

Estimation of Intrinsic Variability

When a particular chemical-process experiment is
performed for the first time, it may be difficult to
draw conclusions as to which of the effects and
interactions are really important. One cannot regard
a given effect or interaction in the proper perspective
unless something is known of the intrinsic variability
of the testing procedure.

To obtain a quantitative measure of the uncertainty
of calculated values of effects and interactions, we
estimate: (1) the variance, o2, of an individual obser-
vation, (2) the variance associated with the average
effect and interactions and (3) the appropriate 95%
confidence interval,

For the_95% confidence interval, more data are
necessary, which may be obtained by replicating a
————
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factorial design or by performing some additional
tests, from which the estimates of variance of effects
and interactions may be calculated and a 95¢% confi-
dence interval constructed. After this, the analysis of
the experiment and the ranking of the variables is
done as already shown.

Estimating Variance of Observations

Assume that in our exa'mple replication of the
factorial design produced the following data:

Run No. Ya Ye Yave
1 1.5 2.5 2
2 3.5 4.5 4
3 7.5 8.5 8
4 5.5 6.5 6
5 9.5 10.5 10
6 8.5 7.5 8
7 12.5 11.5 12
8 17.5 18.5 18

For Run No. 1:

g SO (LS00 & @8 DN
= ¥i 2-—-1

where s, is the standard deviation (defined as the
square root of the variance) of Run No. 1; 52 is the
estimated variance of Run No. 1; § is the average y
value; and v; = n; — 1, where n = number of data
points in Run No. 1.

Assuming that the y’s are not correlated, we can
estimate the pure error, or intrinsic variability, by
pooling variances of observations (sp):

0.5

B w8+ ocee ppa? _
W Fr T e OB
Since the average effects and interactions are linear
combinations of observations, y, the variance of
average effects or interactions, V, may be computed
from:
VaVi=Vi=Vi=Vy+ Vy= Vy=Vin =3,/4
where each one of the subscripts 1, 2, 3 refers to a
particular variable, -

Calculating the 959, Confidence Interval

The equation for the 95% confidence interval is:

95% C.I. = Stat = tr,an vV V(Stat)
where “Stat” stands for the statistic in question

© g s ey
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(in this special instance E;); t,.» = a statistical-
table value (given in many references dealing with
statistics®4), which corresponds to given , and o
values; and V(Stat) = s,2/4.

In our example, E; = 1; v = 41 + v2 .. . + vs
= 8 (1, vz - . . vs all equal 1 because, by definition,
v = n — 1, where n stands for two observations in
each run); and o = significance level = 0.05 (a
value chosen in most statistical work); and t,.. =
2.306 (value read from table, corresponding to v = 8
and ¢ = 0.05). Therefore, the 959 confidence inter-
val equation becomes:

95% C.I. =1 = 2.306(0.5/4)"* = 0.185 and 1.815
The values 0.185 and 1.815 mean that we are 95¢%
certain that the true value of E; lies between these
two numbers. Similar calculations can be made for
the other effects and interactions, as shown in Fig. 6.
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