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Kinetic effects on particle morphology and size distribution

during batch precipitation

T. A. Ring

Powder Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Abstract

This paper reviews the effect of growth and aggregation kinetics on particle shape and size distribution
of batch precipitations. Crystal growth kinetics at each crystal surface determine the final crystal shape.
These processes are affected drastically by impurities. Impurities typically used to alter crystal shape fall
into the following categories: anions, cations, ionic surfactants, non-ionic surfactants and chemisorbed
species. These impurities absorb in different ways on specific crystal faces, changing their growth kinetics
and thus altering the crystal shape. Non-ionic polymer surfactants arc effective in preventing aggregation
by steric stabilization. When aggregation occurs, aggregate shapes arc fractal. The mean size of
precipitated particles and their size distribution are also discussed in view of various kinetic growth

mechanisms.

Introduction

The morphology of a precipitated powder is
important when its application is considered. For
example, the specific surface area of powdered
drugs affects absorption rate; the particle shape
(and size) of a pigment influences its color, and
the length to diameter ratio of a powdered rein-
forcement influences the strength and toughness
of composite materials. These are only a few of
the many examples where the precipitated parti-
cle morphology plays an important role in deter-
mining the properties of products. In addition,
powder purity is to some degree influenced by
particle morphology, since more irregular particle
shapes trap solvent and other impurities more
effectively.

Crystal shape

The shape of a crystal (i.e., its crystal habit)
can be either thermodynamically or kinetically
controlled. However, thermodynamic control of
crystal habit is only important for crystals grown
al  very low supersaturation ratios (i.e.,
S < 1.000 1). These crystals tend to be of a min-
eralogical origin. In most other cases, the rate of
the slowest growing crystal faces gives rise to the
crystals’ shape.
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Equilibrium shape

Gibbs [1] was the first to offer a thermody-
namic description of the equilibrium shape of a
crystal, where the total free energy of a crystal is
the sum of the free energies associated with its
volume, surfaces, edges and corners. Gibbs
showed that the edges and corners had an effect
only when the crystal was small and the surface
free energy decreased in proportion to the crystal
size. For crystals of the same volume, the equi-
librium shape will occur at the minimum value of
the total surface energy (i.e., E; = £y,4,); where y,
is the specific surface energy of the ith face with a
surface area A;. Wulftf' [2] established that for a
crystal of a fixed weight, only one shape can
correspond to the lowest free energy.

When a crystal has assumed its equilibrium
shape, there exists within the crystal a point,
shown in Fig. 1, to which the perpendicular dis-
tances from all faces, &;, are proportional to their
specific surface energy y;. Any other possible non-
equilibrium face has a surface energy such that a
plane drawn with the corresponding orientation
and distance from this point of intersection would
be entirely outside the crystal. This theorem corre-
sponds to the following formula:
hy hs W
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When an equilibrium-shaped crystal forms, the
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Fig. 1. Equilibrium crystal shape [4].

growth rate of each /th face is proportional to its
surface energy. Because of their high growth rate,
the high surface energy surfaces with their high
growth rate will have the smallest surface area.
They are also rougher, which supplements the
higher growth rates. Wulfl’s theorem has been
confirmed by careful experiments by Valetan [3]
with small crystals ( = 10 um).

Figure 2 shows an idealized cubic crystal with
flat F faces, stepped S faces and kinked K faces.
The rougher S and K faces grow very quickly
compared with the F faces, because the distance
that the growth unit must diffuse along the sur-
face to be incorporated into the crystal structure
is shorter on the S and K faces than on the F face.
For this reason, these S and K faces are rarely, if
ever, observed. The crystal habit is dominated by
the slow growing F faces. From a fundamental
knowledge of the crystal structure, it is possible to
predict the slow growing F faces and thus the
equilibrium crystal structure.

The value of this theory of crystal-habit equi-
librium is limited due to the fact that normal
crystal growth takes place at non-equilibrium con-
ditions. However, Gibbs notes that for macro-
scopic crystals, the free energy associated with the
driving force for precipitation will be larger than
changes in free energy due to departures from the
crystals’s equilibrium shape. The shape of these
crystals will depend on kinetic factors, which are
affected by crystal defects, surface roughing, sol-
vent type, impurities in the solvent and the actual
precipitation conditions. Therefore, when a crystal
retains its equilibrium shape, it simply means that
either the ‘kinetically controlled crystal habit’
is the same shape as the equilibrium shape or
that the crystal is grown at near-equilibrium
conditions.

Kinetic shape
The rate determining step for the growth of the
F faces of a crystal determines its kinetic shape.

Fig. 2. Flat (F), stepped (S) and kinked (K) faces correspond-
ing to the directions parallel to A, B and C crystallographic
directions [7].

The S and K faces will almost grow faster than
the F faces. The only exception to this rule is
when an impurity is absorbed onto a S or K face;
this will drastically reduce the growth rate of a S
or K face to a level below that of an F face. These
impurity effects are discussed later. Growth rates
of different F faces often exhibit different depen-
dences on the supersaturation ratios, and the crys-
tal size R, as shown in Table 1.

A power law approximation for the growth
rate dR/d¢|; of each ith face as a function of the
saturation ratio S has been suggested by many
authors [4, 17]. This means
dR )
ai| = kS 2
which is written in terms of a rate constant k; and
the exponent m; which depends on the growth
mechanism and the actual growth conditions.
Therefore, the relative growth rates for two faces,
denoted 1 and 2, would be

dar

de|, k8™

4R k57 5
dr,

If the individual growth rates have the form sug-
gested in Fig. 3, then face 2 will be the slowest
growing face and control the crystal habit at low
supersaturation, while face 1 will control the crys-
tal habit for the higher levels of supersaturation.
This type of behaviour has been verified for many
real systems. One example is the precipitation of
potassium iodide from aqueous solutions, where
Kern [8] showed that two different crystal mor-
phologies result from precipitating above and be-
low a supersaturation of 1.14. Other aqueous
precipitations also exhibit this behavior [5].

To complicate matters, during a batch precipi-
tation, the supersaturation ratio decreases as the
crystallisation proceeds. This can lead to a change
in crystal habit and growth mechanism with time.
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TABLE [. Summary of bulk growth kinetics. Crystal growth rate dR/d¢ as a function of the saturation ratio S and the particle

radius R. dR/dt = C*f(S)g(R)

Growth mechanism C 1(S) 2(R) Ref.
_—— vD
Diffusion, bulk 3 §—1 1/R [16]
eq
. AG*\
Mono-surface nucleation paDd ! exp % R? 4]
B
Poly-surf leati i (5 — 1) expf 262 ) 1 [4]
oly-suriace nucieation o — L) eX
y ¢ (C‘q)z-_\ P %pT
D B Si\°
Serew dislocation Lj’ﬁ — tanh(—f) 1 [15]
(a'p) $ s
. vkykp T2
Heat conduction _— InS* I/R [4]
AH,
JAGE - ﬁLz}'vldl
(2BkyTIn S
hg - 5o
! 2y,
5
“In § = A”ﬁ dr
RT*
Te
concentration in solution surrounding the crystal.
On the right is drawn the shape of the crystal after
different times. The growth rate is ~60% higher
5 FAGE 2 at the corner than at the middle of the face [4],
e which leads to the conclusion that the corner of a
Z crystal will tend to grow faster than the center
-‘g‘ FACE 1 of the faces when diffusion-controlled growth is
& the rate-limiting step. In the extreme, this leads
to dendrite formation. Since the fast-growing cor-
ners have a thinner mass transfer boundary
layer [4], the resistance to diffusion at the corner
is less than that at the face. Several dendritic

Salturation Ralio, S

Fig. 3. Variation of growth rate, dR/d¢, with supersaturation
S for two F faces | and 2.

Since the rate constant k; depends on temperature,
the crystal habit can also be altered by drastic
changes in temperature. The flow of solution
around a crystal also influences its shape [7].
Crystal defects (i.e., dislocations, twinning and
inclusions) are also responsible for morphological
changes. But the most important factor used in
influencing crystal habit is impurity doping (inten-
tionally or nonintentionally), which is discussed
later.

Diffusion-controlled shape
A two-dimensional ‘square crystal’ is shown in
Fig. 4. On the left are drawn curves with the same

particles are shown in Fig. 5. In Fig. 5(b) for
example, 12 axisymmetric dendrites are emerging
from the cylindrical core of these fussy bochmite
spheres.

Fig. 4. Change in crystal shape by diffusional growth, On the
left are given the concentration profiles around a 2-D crystal,

while on the right is given the crystal shape at different times

(4].
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(c)

Surface nucleation-controlled shape

When surface nucleation is so slow that each
layer on an F face originated from a single surface
nucleus as shown in Fig. 6(a), the shape of the
crystal will be controlled by the nucleation rate on
the different F faces; that is, those with the lowest
nucleation rate will have the largest surface areas.
At higher levels of supersaturation, surface nuclei
grow together as shown in Fig. 6(b), eventually
flattening and completing the surface. Surface nu-
cleation is highly dependent on the surface con-
centration of precipitating species [4], above a
critical supersaturation ratio. Bulk diffusion to the
surface will give a non-uniform surface concentra-
tion and the faces will no longer be planar and

(b)

(d)

Fig. 5. Dendritic monosized particles precipitated by Matijevic: (a), hematite [48]; (b) boehmite; (c) vanadium oxide; (d) magnetite
[49).

smooth, leading to spiral growth, as shown in Fig,.
7(a), and step bunching, as shown in Fig. 8.

Growth spiral-controlled shape

Screw or spiral dislocations are commonly ob-
served in many industrial precipitations from NaCl
to sucrose. A screw dislocation will convert an F
face to the shape of a pyramid or a cone. The angle
0 of the cone for an Archimedian spiral can be
calculated by [6]

0= tan—l(f’) (4)

Non-Archimedian growth spirals [7] occur due to:
(i) a pair of dislocations of either like or opposite
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Fig. 6. Surface nucleation-controlled shape due to (a) 2-D
nuclear growth, (b), Polynuclear growth [4].

sign as shown in Fig. 7(b), (ii) a group of disloca-
tions lying along a line giving a hillock and ‘wob-
bling’ of the center of the spiral giving macroscopic
spirals, as shown in Fig. 7(c). A single long hillock
at the edges of Y Ba,CuQ;_ . superconducting
crystals grown from flux as shown in Fig. 9 are
responsible for their platelet shape [9]. At high
levels of supersaturation, the above equation is not
accurate, since several ‘step bunching’ spirals occur
at once, giving larger values of 0.

Aggregate shape

Particles can aggregate by either Brownian-mo-
tion or shear-induced aggregation. With Brownian
aggregation, diffusion of particles by Brownian
motion causes particle collisions. With shear-in-
duced aggregation, fi.id movement—induced by
an external source (e.g., a stirrer)—causes particle
collisions. The change in the total number of
particles per unit volume N, due to Brownian
aggregation is given by
dN+ 4
7 4K N, (5

where K is the aggregation rate constant. This
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Fig. 7. Spiral shapes (a), simple spiral; (b) spiral due to a
group of dislocations lying along a line; (c), macro spiral
formation due to periodic motion of center [7).

expression has been shown to be in good agree-
ment with experimental measurements [10].

To show how a population of particle sizes,
H(R, ) = Ny /R, changes due to Brownian aggre-
gation, a relationship can be derived [11] as fol-
lows:

dn(R,0)
de

K jr;(.\', DR —x, 1) dx —2Ky(R, N1 (1)

0
x?) 2%
x[(‘z)—];+l:| (6)

STEP BURCHING
WITHRESTRICTED
DIFFUSION ZONES

|

Fig. 8. Step bunching showing diffusion depletion zones
(spherical) for each step.
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where the aggregation rate constant is
kg T

K= 7
3uW 7

and W is the colloid stability factor. A value of
W = 1.0 corresponds to the case where the rate of
particle birth and death is equal to the particle
collision rate (i.e., a sticking probability of 1). The
ith moment is described as follows:

fes}

fx n(x) dx

=2

J. n(x) dx

Q
@

Jx‘n(x) dx

0
| S — 8
Ny (8)
For shear aggregation, the change in the total
number of particles per unit volume Ny is given
by:

P
%= —4 K, Y k*N,.? (&)
di k=1
where K, = 16yR*/(3W) and R, is the initial par-
ticle radius, y is the shear rate and p is the limit
size which is a function of time r. A population of
particle sizes, y(R, ) = N, [R,, changes due to
shear aggregation [12] as follows:

R
dy(R, ) 2
dul R, 1) == R% | x(R — x)(x, Op(R — x, 1) dx
dr 3
0
4
-3 2E0 jx(xm) e, ) dx (10)

An aggregate shape ?‘requcntly observed in ag-
gregative precipitation is seen in Fig. 10. This
shape has evaded quantitative evaluation until the
development of fractal mathematics [13]. The
shape of the Brownian aggregates has been stud-
ied by computer modeling in two ways: (i) aggre-
gation particle by particle [14, 15], as shown in
Fig. 11(a) and (ii) aggregation cluster by cluster
[16, 17], as shown in Fig. 11(b). These shapes turn
out to be fractal [18], having the number of
particles N(R) inside a sphere of size R given by

N(R)xR"F (1)

where Dy is the fractal dimension. These com-
puter models give a fractal dimension of 2.5 for
particle/particle aggregation and 1.6 to 2.2, de-
pending on the model used, for cluster/cluster

Fig. 9. Group of dislocations lying along a line giving an edge
hillock.

Fig. 10. Aggregate shape of particles grown in aqueous solu-
tion [51].

JEREY

A.PARTICLEBY PARTICLE AGGREGATION

B.CLUSTER BY CLUSTER AGGREGATION

Fig. 11. Computer-generated fractal aggregate shape due to
(a), particle—particle aggregation [50] (D¢ = 1.5 in 2 D) and
(b), cluster by cluster aggregation (D= 1.2 in 2D).

aggregation. Figure 11 shows two-dimensional
examples of a computer generated aggregates
‘grown’ under conditions of particle/particle ag-
gregation (i.e., D= 1.5in 2D and 2.5 in 3D) and
cluster—cluster aggregation (i.e., Dp=1.2 in 2D
and 2.2 in 3D). Cluster/cluster aggregates are less
dense (i.e., greater porosity) on the average than
particle/particle aggregates. If shear forces are
used to mix the precipitating system, the shape of
the aggregates may be much more compact like
that shown in Fig. 10. This shape can also be




Fig. 12. Aggregate shape due to shear forces (schematic).

idealized as a fractal aggregate within and aggre-

gate, as shown in Fig. 12, having a fractal dimen-

sion given by [19]

T (12)
I

where S is the ratio between sizes and P is the

packing fraction in each aggregate.

Crystal habit modification by impurities

All of the previously mentioned changes in
crystal habit caused by kinetic factors can be
drastically affected by the presence of impurities,
which specifically absorb on a preferential face of
a growing crystal. In the first example of crystal
habit modification, which was described in 1783 by
Romé de L’Isle [20], urine was added to a satu-
rated solution of NaCl, changing the crystal habit
from cubes to octahedra. A similar discovery was
made by Leblanc [21] in 1788, when alum cubes
were changed to octahedra by the addition of
urine. Buckley [22] reviewed the effect of organic
impurities on the growth of inorganic crystals from
aqueous solution and Mullin [23] discussed the
industrial importance of this practice.

Since crystal growth is a surface phenomenon,
it is not surprising that impurities which concen-
trate at crystal faces will affect the growth rate of
those faces and, hence, the crystal shape. With
some surface active impurities, small traces (about
100 ppm) are all that is required to change crystal
habit during crystallization. These impurities can
(i) reduce the supply of material to crystal face, (ii)
reduce the specific surface energy and (iii) block
surface sites and pin the steps of the growing
crystal.
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The impurities which modify crystal habit fall into
4 categories:

(i) inorganic ions (either anions or cations),

(ii) ionic surfactants (either anionic or
cationic),

(ili) non-ionic surfactants especially polymers
and

(iv) chemisorbed species such as organic dyes.

Any of these surface active impurities has a
propensity to adsorb on a specific crystal surface.
The specific surface energy y that results from the
adsorption of I' atoms (or ions) per unit area is
given by Gibbs as

—dy =TkgT(d In a,) (13)

where a, is the solution activity of the impurity.
This change in specific surface energy is also
observed at the liquid—vapor interface which can
be measured with a Langmuir trough as a change
in the surface pressure. The adsorbed amount I is
frequently related to the impurity activity by a
Langmuir-type adsorption isotherm [23]

ba,
Ty

where b( = K/a,), which is related to the distribu-
tion coefficient K and the activity of the solvent a,.
The Langmuir adsorption isotherm is frequently
used to describe the adsorption of ions and
chemisorbing species but not polymers and ionic
surfactants; however, a modified form of this equa-
tion can account for the adsorption of one polymer
molecule in place of many solvent molecules [24]
and micellization of ionic surfactants [25]. Each
face of the crystal will be different with respect to
adsorption. As a result, each crystal face will have
its own adsorption isotherm I'; with its own values
of I'y; and b,.

Experiments have been performed in which
precipitations with surface active agents present
were performed in a Langmuir trough to measure
the surface pressure at the liquid—vapor interface
of the surface active agent. These studies [26, 27]
have shown that the crystal habit can be changed
when there is sufficient surface coverage. These
studies show the direct link between morphological
changes during precipitation and the adsorption of
surface active agents.

Fries (14)

Habit modification by ionic and chemically binding
impurities

As an example, Kern [28] discusses the adsorp-
tion of Cd ions in the habit modification of a
NaCl and the adsorption of Pb in ppm levels on
the habit modification of KCl. He postulates that
the growth is suppressed on the {111} planes of
NaCl due to a Cd layer that completely covers
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that face of the crystal. This Cd adsorption prefer-
ence is caused by the similaritics between the {111}
planes of NaCl and the {I11} planes of CdCl,.
Matijevic has noted changes in crystal habit due to
anions in several systems [29]. According to Burrill
[30], the adsorption of impurities at a particular
surface decreases the area of the crystal face avail-
able for adsorption of solute molecules and, there-
fore, the growth rate of this surface. Mullin [31]
and Leci suggests that impurity ions in the vicinity
of the surface will: (i) reduce the effective surface
supersaturation, (ii) retard diffusion and (iii) hin-
der the aggregation of growth units.

Cabrera and Vermilyea [32] note that the
growth rate will decrease if the mean distance
between strongly adsorbed impurities is compar-
able with the size of the critical surface nuclei (r*).
Therefore, large impurities will retard the growth
of the crystal faces on which they adsorb. This
trapping the impurity in the nearest step site is
commonly referred to as ‘step pinning’, as shown
in Fig. 13. Overgrowth of these pinned impurities
lead to crystal defects. Albon and Dunning [33]
have observed step pinning on sucrose crystals in
the presence of raffinose impurities.

Chernov [34] suggests that there are two effects
of impurities: (i) if an impurity is relatively small
and mobile, it may reduce the number of kink
sites and (ii) if an impurity is large and immobile,
it may act as an obstacle for step movement (i.e.,
step pinning). Reducing the number of kink sites
will also decrease crystal growth. Chernov esti-
mates that an impurity concentration of 100 ppm
will drastically reduce the crystal growth rate.
Slavnova [35] qualitatively confirmed Chernov’s
hypothesis. The effects of poisons on surface nucle-
ation kinetics and the spiral shape are discussed by
Sears [36].

Buckley [37] has classified many different im-
purity effects on crystal habit modifications. In

R
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Fig. 13. Flux of a solute to a step with impurity pinning step
movement.

most cases, as previously discussed, the presence
of impurities decreases the growth rate of specific
crystal faces, which lead to a change in the crystal
habit, since the slowest growing faces dictate the
final crystal morphology. In some exceptional
cases, impurities can increase the growth rate of a
particular crystal face. Such an increase may be
caused by a decrease in the surface energy, thus
reducing the size of the critical nucleus. This
reduction in surface energy leads to an increase in
surface nucleation rate which more than compen-
sates for a decrease in the step velocity [38].

Impurities, such as ppm levels of Pb?>* in the
precipitation of NaCl, can improve the quality of
the crystals [39] and not enter into the crystal
lattice. One per cent of Fe added to the precipita-
tion of ammonium dihydrogen phosphate gave
high-quality, impurity-free crystals which grew at
ten times the rate of the pure solutions [33].
Impurities can also cause the appearance of crys-
tal faces not observed in pure solutions. Hartman
[40] has proposed that some impurities will cause
step or kink faces to become flat, due to the
adsorption of impurities at the ‘rough surface’, as
shown in Fig. 14. Lateral growth is only possible
at a step, which growth on this type of surface is
similar to growth on an F face [41].

Habit modification by ionic surfactants

Each different type of crystal face has a difter-
ent surface chemistry. For example, kaolin
platelets have an edge which is predominately
Al,O; and a face which is predominately SiO,. In
this case, each of these crystal faces adsorbs ions
from solution differently. A surface charge results
which is due to the adsorption of positive and
negative ions. The adsorption of one type of ion
usually predominates at a certain pH (and con-
centration of other ions). A measure of the equi-
librium constant for this adsorption is the
iso-electric point (i.e., the pH at which the parti-
cles do not move in an electric field), which is
different for different surface chemistries as shown
in Table 2.

Impurities

/\
.

Stepped or Kinked Crystal Surlace

Fig. 14. Conversijon of S and K faces to F faces by adsorp-
tion of an impurity layer [7].




TABLE 2. Nominal isoelectric points of oxides

Material Nominal Composition IEP
Quarlz 5i0, 2
Soda lime silica glass 1.00Na, 00.58Ca0.3.708i0, 2-3
Potassium feldspar K,0.A1,0,.65i0, 3-5
Zirconia Zro, 4-6
Apalile 10Ca0.6P0O,.2H,0 4-6
Tin oxide Sn0, 4-5
Titania TiO, 4-6
Kaolin (edges) Al 0,.5i0,.2H,0 5-17
Mullite 3A1,0,.28i0, 6-8
Chromium oxide Cr,0,4 6-7
Hematite Fe,0, §-9
Zinc oxide Zn0 9
Alumina (Bayer process) AlLO, §-9
Calcium carbonate CaCO, 9-10
Magnesia MgO 12

The growth rate for different crystal faces can
be drastically changed by the specific adsorption
[42] of ionic surfactant impurities at concentra-
tions below their critical Micelle concentration.
An example of this phenomenon is the use of
anionic and cationic surfactants to change the
habit of adipic acid crystals during precipitation
[43]. As shown in Fig. 15, the addition of a
cationic surfactant adsorbs on the negatively
charged surfaces of adipic acid and limits their
growth giving platelet-like crystals. Anionic sur-
factants will adsorb on the positively charged
surfaces of the adipic acid crystals and limit their
growth, giving needle-like crystals. This preferen-
tial and strong adsorption of ionic surfactant is
frequently used industrially to control crystal
morphology during precipitation,

Shape modification by non-ionic polymeric
surfactants

If the crystals nucleated and grown in a super-
saturated solution are colloidally unstable (i.e.,
W = 1.0), they will aggregate when their number

anionic

.‘ cationic
detergent, etergen!

S G

prlsm retardatlon of basis

faces growth on faces
= +
@ ey
plates
needles

Fig. 15. Influence of ionic surfactants en the shape develop-
ment of adipic acid crystals grown from aquecous solution [4].
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density is sufficiently high. Polymers that adsorb
on the surface are used as precipitation additives
to sterically stabilize the freshly precipitated par-
ticle against aggregation. Polymers typically ex-
hibit a Langmuir-type adsorption isotherm [23].
At monolayer coverage (or some fraction
thereof), aggregation is prevented [44]. In a batch
reactor, the initial supersaturation is high, which
leads to a high nucleation rate. These nuclei are
small in diameter and have a huge surface area
per unit volume. If the amount of polymer added
is insufficient to stabilize this size of particle,
aggregation will take place. With the same
amount of polymer, the aggregation will stop
when the particles have grown to a size (i.e., a
sufficiently low surface area per unit volume)
where there is enough polymer to provide steric
stabilization [38].

In stirred-batch reactors, the shear forces will
tend to compact the aggregates [45] as shown in
Fig. 10. If cluster—cluster aggregation occurs, nu-
clei and first-generation aggregates will be incor-
porated into the final aggregate structure, as
shown schematically in Fig. 12. This is the case
[39] with TiO, particles precipitated from alco-
holic solution of titanium ethoxide and water
with polymer additions of hydroxylpropyl cellu-
lose.

Crystal size distribution

In a batch precipitation, the growth rate affects
the population size distribution y(R, ) according
to the population balance

dR
R 1) [ nR, ’)]
at R

Using the growth rate functionality given from
Table 1 of the form g(R) = R" in the population
balance equation, with the initial condition

(R, t =0) =n*(R) (16)

the following solution [46] results

=0 (15)

IR 1) =3 Ag—"(R) explds [ g~ '(R) dR]
i=1

x exp[ — ¢4, [ F(S) di] (17)

where A, is a vector of coeflicients corresponding
to the eigenvalues /;. These coeflicients are deter-
mined from the initial condition as follows:

oo

= j,,O(R)g SRy expl Jg (R AR] (18)

0
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Fraction of Particles by Number
3
1
o

Particle Size, R (pm)

Fig. 16. Particle size distribution in a batch crystallizer with
different size dependent growth rates (see Table I for values
of n).

The second experimental term in eqn. (17) ac-
counts for the decrease in the saturation ratio S
as of function of time ¢. For g(R) = R", the size
distribution of particles will (i) widen with time
for n > 0, (ii) remain the same for » =0 and (iii)
get narrower for n < 0. The growth of size distri-
butions with different values of » is shown in
Fig. 16. '

Aggregate size distribution
When the saturation ratio S is large, the nucle-
ation is the most important process in the reduc-
tion of the concentration of precipitating species
at the beginning of batch precipitation. At the
high nucleation rate, aggregation plays an impor-
tant role in the forming of the particles produced
during precipitation when the colloid stability
ratio W is small near 1.0. To account for aggrega-
tion in the population balance for batch precipita-
tion, eqn. (15) must be combined with eqn. (6) as
follows:
R

R, 1) dR _ o
ot dt n(R,N] K J"K-‘; DR — x, f) dx

R ¢
(?) 2%
— 2K, (R, z)NT[?JFE + 1] (19)

This equation has no analytical solution. The
following approximate solution [47] for the mean
aggregate size / as a function of time assumes that
the most frequent collision is between nuclei and
large aggregates and that the entire precipitating
mass is precipitated as nuclei at time  =0.

Lmdo By ln[l +L] (20)

1/2
where /, is the initial aggregate size, often equal
to Ry [47], the nuclei size, and ¢, is the half-life
for aggregation defined by

1

e @
fij KRR, (21)

This equation has been shown to agree with ex-
perimental data by several authors when aggrega-
tion is the most important growth mechanism [40]
(ie., f=KN;Ry/(dR/dr) > 1). In this distribu-
tion, the nuclei and the aggregates coexist, giving
a bimodal size distribution. Since particle aggrega-
tion is a diffusion-controlled process, it will have a
size-dependent growth rate function g(R) =1/R
and the width of the aggregate size distribution
will decrease as the aggregates become larger, as
shown in Fig. 16.

Conclusion

This article reviews the state of our knowledge
concerning the shape and size distribution of pre-
cipitated particles. Crystal shape is discussed from
the point of view of equilibrium and kinetic
effects, the latter being most sensitive to impuri-
ties. The effects of the various types of impurities
including anions, cations, anionic and cationic
surfactants, chemically binding impurities and
non-ionic polymeric surfactants are discussed sep-
arately. Each has an effect on growth and aggre-
gation kinetics, giving rise to different crystal
shapes. The kinetic effects on particle size distri-
bution are discussed from the point of view of a
population balance. The solution to the popula-
tion balance gives the size distribution at various
times after nucleation. Under some conditions,
the size distribution widens as growth proceeds,
while in other conditions, the size distribution
Nnarrows.

List of symbols

a activity (,solvent, ,solute)

A; area of ith crystal face, [L?]

b coefficient in Langmuir equation

C concentration (equilibrium), [M/L’]

d height of step, [L]

D diffusivity of precipitating species,
(,surface), [L?/6]

E; total surface energy, [ML?/6?]

f(S) saturation ratio dependence on growth

rate
£2(R) radius dependence on growth rate, [L”]
G Gibbs free energy, (*critical,

surface), [ML?/0?3)
h; distance from point to crystal surface, [L]

AH enthalpy, (;fusion), [ML?/6?]
s heat transfer coefficient, [ML/(8*-K)]

ky Boltzmann constant, 1.38 x 10~23,
[ML?/(0*K))]

K distribution coefficient for Langmuir
equation




K aggregation rate constant, (;shear)
[L*/(0-Ng)]

R spherical particle size (radius), [L]

R, nuclei particle size, [L]

Mg, surface equilibrium concentration,
[M/LY]

N; total number of particles of type i per
unit volume, [No./L?]

Nt total number of particles present per unit

volume, [No./L?|
p limit number for shear aggregation, —.
R; particle size (radius) of ith particle, [L]
8 saturation ratio, C/C,

i time [6] !

L2 1/(KNy), half-life for aggregation, [6]

T absolute temperature, [T]

X an integration variable for the range of

particle sizes, [L]

X number, length mean diameter, [L]

(x?) number, surface mean diameter, [L?]

Yo distance between steps, [L]

¥ mean distance travelled by solute
molecules on face, [L]

W colloid stability factor, —

Greek symbols

f shape factor (jarea), ( length,)
f ratio, aggregation rate to growth rate, —
¥y specific surface energy of ith crystal face
¥ shear rate, [0 ]
F adsorbed density, (yymonolayer),

[M/L7]
n° constant nuclei population at time zero

and size R,, [No./(L*L)|
N(R, 1) number population density, [No./(L*L)]

Ay size of aggregate growth unit (radius),
(L]

i eigenvalues

0 angle of spiral cone

y reciprocal of molar volume, [L 7]

i viscosity, [M/(L-8)]

Note: Fundamental dimensions are defined as
follows:
No. = number of particles

M = mass

L =length

8 =time

T = temperature
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